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ABSTRACT 
 

Onboard classification of remote sensing data can permit 
autonomous, intelligent scheduling decisions without ground 
interaction. In this study, we observe the sulfur-rich Borup-Fiord 
glacial springs in Canada with the Hyperion instrument aboard the 
EO-1 spacecraft. This system offers an analog to far more exotic 
locales such as Europa where remote sensing of biogenic indicators 
is of considerable interest. Previous work has been performed in 
the generation and execution of an onboard SVM (support vector 
machine) classifier to autonomously identify the presence of sulfur 
compounds associated with the activity of microbial life. However, 
those results were severely limited in the number of positive 
examples available to be labeled. In this paper we extend the 
sample size from 1 to 7 example scenes between 2006 and 2008, 
corresponding to a change from 18 to 235 positive labels. We also 
explore nonlinear SVM kernels as an extension of our onboard 
capability. 
 

Index Terms—SVM, Hyperspectral, Autonomy, Sulfur, 
Hyperion 
 

1. INTRODUCTION 

Remote sensing enables the otherwise impossible goal of analyzing 
large, inhospitable regions too distant for direct human observation 
and study. However, satellite-based instruments generate far more 
data than can ever be successfully downlinked. While several 
approaches have been employed to address this limitation, new 
instruments such as hyperspectral cameras continue to strain even 
the most robust operations centers [1][2]. Despite this production 
capability, the majority of data collected by a streaming camera is 
redundant or otherwise uninteresting after a region has been 
initially scanned. Instead, key regions with unusual or dynamic 
features may be selected as high priority while static areas might 
receive lower or no priority. While time-based events may be 
predicted and captured in similar manner, such occurrences are 
often either unpredictable or not known to exist prior to discovery. 
Thus an onboard detector capable of deciding when a region is 
interesting based on predefined criteria is of great interest. In our 
case, we are supporting NASA’s mission to discover living 
systems and their evidence by creating a remote sensing detector 
for sulfur compounds. 

Prior work on precisely this question was hampered by a lack 
of available labeled hyperspectral imagery [3]. We will be 
extending these results by including two orders of magnitude more 
data for both test and training sets. A more thorough treatment of 
this topic can be found in Mandrake et al [4]. 

 

2. TARGET SCENES AND INSTRUMENT 

From above Ellesmere Island can be seen vivid yellow stains along 
a glacial edge. These discolorations were identified as supraglacial 
deposits associated with sulfur-rich springs flowing through and 
across a 200-meter thick glacier. The telltale yellow stain was due 
to the presence of elemental sulfur, which dominates the 
composition of the deposits. The presence of elemental sulfur, 
gypsum, and hydrogen sulfide gas within the flow, compounds 
containing sulfur in three different oxidation states, suggest the 
presence of a complex redox system likely biogenic in origin. This 
theory is supported by the presence of a rich microfauna of known 
and as yet unidentified microbes. This arrangement of fissured 
permanent ice, sulfur-bearing subsurface rock, and seeping water is 
potentially analogous to the surface of Jupiter’s moon Europa. As 
elemental sulfur occurs naturally generally from either volcanic or 
anaerobic bacterial processes, producing a remote elemental sulfur 
detector is a step towards a microbial life detector. 

The data available to this study consists of seven flyover 
reflectance images of Borup Fiord collected by the Hyperion 
imager aboard the Earth-Observing-1 spacecraft (EO-1) for both 
training and test cases. Labels were provided by hand by Damhnait 
Gleeson, with only a few positive (sulfur-bearing) examples 
present in each image along with ~760k negative examples divided 
between ice and rock categories. False Positives in these source 
images are referred to hereafter as “Likely False Positive” as we do 
not truly know there are no other sulfur springs in the vicinity. In 
addition, seven other scenes were obtained that are far from any 
known sulfur. False positives in these later images are referred to 
as Sulfur-Free False Positives and are considere to be more 
egregious mistakes than false positives detected near known sulfur 
deposits. 

 

3. METHODS 

Following the methodology originally developed by Castaño et al 
[3], we employed a multiclass SVM to classify each sample 
location using 12 (of the total 220 available) wavelengths Hyperion 
observes using both linear and Gaussian kernels. Only 12 bands 
may be examined at a time due to onboard processing limitations. 
The selection of these optimal wavelengths for classification 
purposes were evaluated by Greedy Forward Feature Selection, 
Recursive Feature Elimination (RFE), a domain expert’s manual 
examination, and finally compared to Castaño et al.’s  RFE based 
only on a single 2006 image. For initial band selection, a binary 
classifier was used (sulfur / non-sulfur). Using the optimal band 



sets produced by each of these four methods, we trained a linear 
kernel 2-class (sulfur / non-sulfur), 3-class (sulfur, ice, rock), and 
4-class (bright/dark sulfur, ice, rock) multiclass SVMs. Statistics 
on success were measured via per-image cross validation, where 
one of the seven source images was used as a held-out test set and 
the others were used to train the SVM. 

We evaluated the impact of a large range of different 
values for the SVM hyperparameter C. The “best” result will be 
some set of bands (one of the four sets selected above), a C value, 
and the number of permitted classes. This configuration can then 
be coded and uploaded into EO-1 for autonomous sulfur detection. 
For the final comparison, we generalized this formulation to 
include a second hyperparameter γ that defines the width of the 
Gaussian kernel. 

In our search for an accurate classifier, we allowed the 
possibility that our labeled examples were less than pure. Labeling 
these pixels manually is challenging even for experts. To address 
this, we used a label confidence evaluation method, Pair-Wise 
Expectation Maximization (PWEM) [5], to filter suspect labels. 
 

4. RESULTS 

4.1. Band Selection 

The sets of 12 bands of interest selected are shown in Table 1. 
General agreement is seen between the two RFE methods and the 
Expert picks, with the 2006-only, single image method choosing a 
single anomalous high-wavelength value. The Greedy Forward 
method however retains some very high wavelength components 
which are likely due to the very low signal to noise ratio at those 
higher values. The Greedy Forward method will not be pursued 
from this point onward based on these results. 
 

Table 1. Band Selection Results (λ nm) 
RFE 2006 

only 
RFE Greedy 

Forward 
Expert Pick 

426 426 426 426 
436 436 436 436 
446 446 446 446 
456 456 456 456 
506 466 556 466 
516 536 566 486 
526 546 576 506 
536 556 586 526 
546 566 596 546 
556 576 1448 566 
576 586 1791 586 
994 596 2013 626 

 
4.2. Expanding from 3 to 4 Classes 

Our early attempt at this analysis showed abundant false positives 
(FP) using the entirely of the sulfur training set and a 3-class SVM 
(~105 FP events per downlinked image). We suspected that there 
were multiple populations (including potentially false labels) 
within our positive example sulfur training set. We applied a K-
means clustering method to the sulfur labels that immediately 
yielded two distinct populations: one with high mean reflectance 
and one low. We divided our sulfur labels according to the 

clustering results (yielding four classes) and discovered that most 
of the false positives were from the “dark” sulfur class. Therefore, 
although this division was not obtained via manual labeling, it still 
provided a very useful refinement of the labeled data and, as we 
will show, led to improved performance. Physically, sulfur that 
occurs within rock rich pixels is extremely difficult to distinguish 
from sulfur-free rock-rich pixels, supporting this differentiation. 

4.3. Filtering Poorly Labeled Examples 

Armed with our three band sets of interest (RFE 2006, RFE, and 
Expert Pick), we investigated the mislabeling hypothesis using 
PWEM [5]. As shown in Figure 1, ice labels proved to be the most 
confident, since selecting pure ice examples in the image is quite 
easy. Rock was similarly well labeled with a few remote outliers. 
However, sulfur was highly contentious. No sulfur label exceeded 
0.75 probability of consistency. Separating into bright and dark 
sulfur classes we immediately rise to 104 / 144 bright sulfur labels 
as above 0.75 confident, and 39 / 91 dark sulfur labels above 0.75 
confident. At this point, we discarded any label not above 0.75 
confident as too uncertain for use. We will report these results as 
“4class filtered.” Although necessary, this step removed 40% of 
our already limited positive examples. Low-confidence pixels 
tended to occur near ice-rock boundary areas. 

 

Figure 1. Histogram of label correctness. X axis is the PWEM 
estimate of label confidence. Everything left of the red line was 
filtered as too unconfident. 

4.4. SVM Performance 

Figure 2 shows the performance of the SVMs for various class 
numbers, kernel types, and mislabeled filtration strategies. On the 
right we see the Sulfur-Free FPOS results along the Y axis, while 
on the left are the Likely FPOS results. Note that there are always 
more Likely FPOS than there are Sulfur-Free FPOS. This makes 
sense, as separating sulfur from nearby sulfur-like terrain is a 
harder problem than separating entirely non-sulfurous terrain from 
sulfur-bearing surroundings. On the X axis in both plots is the F-
measure, with each point representing a given SVM configuration 
of C, class number, set of 12 wavelength bands, and in the case of 
the Gaussian kernel the width hyper-parameter γ. We have 
separated the sets of 12 bands (Expert, original RFE result using 
only 2006 image, and current RFE result) into blue, red, and white 



points respectively. The optimal results would be points lying at 
the bottom-right of each graph with zero Likely / Sulfur-Free 
FPOS (Y) and F-measure of one (X).  

The linear kernel 2-class (sulfur / non-sulfur) SVM 
shows poor performance. While several configurations achieve an 
impressive F-measure of up to 0.80 - 0.82 for all three band 
selections, there are more than 104 Sulfur-Free FPOS and similarly 
for the Likely FPOS.  

The linear kernel 3-class (ice, rock, and sulfur) SVM 
shows improvement in all band selections. Sulfur-Free FPOS were 
reduced by two orders of magnitude to a mean of ~40 FPOS per 
Sulfur-Free image. Likely FPOS remained high with a mean of 
~3400 per image. The mean and maximum F-measure also 
increased, with a new maximum of 0.86. 

The linear kernel 4-class (ice, rock, “bright” sulfur-on-
ice, and “dark” sulfur-on-rock) SVM results in two consequences. 
The Sulfur-Free FPOS increases to a mean of ~70 pixels per 
image. Likely FPOS was reduced yielding a mean of ~800 false 
positives per image. Most of the later improvement was due to the 
decision to define all sulfur on rock “dark sulfur” labels as 
unreliable and no longer count them towards our accuracy 
requirement. The mean F-measure increased with a mean of ~0.9 
and a maximum of 0.96. As performance was increased by filtering 
our positive labeled instances, a more rigorous method to remove 
contaminated training examples became attractive. 
 Employing PWEM’s confidence estimation method on 
the 4-class data, a mean F-measure of 0.90 was maintained while 
reducing the mean Likely FPOS to ~600 per image. Sulfur-Free 
FPOS reduced further to a mean of 24 pixels per image. This 
implies mislabeled training examples were indeed corrupting our 
results with FPOS. For EO-1 Hyperion effort, we would select one 
of the blue or white indicators on the graph representing a 
particular combination of band (Expert Pick or RFE) and C hyper-
parameter (3-20 is roughly comparable in performance). This 
linear kernel SVM would then be uploaded for operation. 
Unfortunately, we still expect ~500 false detections on images near 
Borup Fiord. 

Extending to Gaussian kernels (using only Expert and 
RFE bands) yields the last set of graphs that achieve a mean F-
measure of 0.93 and maximum F-measure of 0.98 using the 4-class 
filtered dataset. Mean sulfur-Free FPOS remains at ~ 50 pixels per 
image, while mean Likely FPOS remains high at mean ~1000 
detections per image. Thus Gaussian kernels do suggest utility but 
are no panacea for the limitations of this approach. 

 
5. CONCLUSIONS 

We have shown that while three classes of terrain are an 
appropriate description of the data (ice, rock, and sulfur), in order 

to overcome the limited number of training positive samples we 
were forced to create a fourth “junk” class to contain and remove 
noise. This noise was determined to correspond to the majority of 
“dark” sulfur examples being mixed ice and rock. Since pure ice 
and rock examples were provided as negative labels, we in effect 
created both a sulfur detector and a rock-ice mixture detector 
simultaneously. In the absence of disambiguating additional 
positive sulfur examples, we were forced to instead pear down the 
training label set to remove confounding similarities between 
positive and negative labeled examples. In the end, we successfully 
trained a SVM where less than one FPOS event in a mean 256 x 
3200 image is expected in terrain unlike the training set, ~50 FPOS 
in similar-to-training terrain, and an F-measure of ~ 0.9 with regard 
to the filtered labels. Usage of a Gaussian kernel did improve F-
measures slightly but at a heavy computational cost. 

The research described in this paper was carried out at 
the Jet Propulsion Laboratory, California Institute of Technology, 
under a contract with the National Aeronautics and Space 
Administration. Copyright 2009. All rights reserved. Special 
thanks to the JPL Supercomputing and Visualization Facility for 
their support. 
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Figure 2. SVM performance for 2-4 classes, with and without mislabel filtration, using linear and Gaussian kernels. X axis are F-measure, 
while Y axis are # false positives. Left graphs show false positives on training images, right axis on far-from-source sulfur free images. 


